• Home
  • /
  • Blog
  • /
  • Dispersion analysis of Polypyrrole and ZnO nanocomposite thin film using SPR Techniques
 Issues

Ajay Pratap Singh Gahlot, Ayushi Paliwal, Avinashi Kapoor

Volume

Volume 9  |  Issue : 3  |  DOI : 10.37591/JoPC  |  Received : 08/20/2022    |  Accepted : 08/30/2022  |  Published : 08/30/2022

[This article belongs to the  Journal of Polymer & Composites   (JoPC) ]

Keywords

  • Optical Properties
  •  Polymer
  •  Nanocomposite
  •  Surface Plasmon Resonance.

Abstract

The dispersion analysis of any material is crucial for studying its structure and composition. The interaction of the structure of the material with electromagnetic energy is also determined by studying its dielectric or optical properties. Optical technique is preferred over electrical techniques for analyzing the dielectric properties and out of all techniques, Surface Plasmon Resonance (SPR) is most suitable. Hence, it is exploited for investigating the dielectric and optical properties of dielectrics at metal-dielectric interface. Polypyrrole and Zinc Oxide nanocomposite thin films are prepared by sol-gel followed by spin coating techniques. The films are prepared of two compositions over a gold coated prism. The dielectric properties were examined by varying the excitation wavelength of the source in the visible range.  The optical and dielectric parameters of the nanocomposite thin films were estimated by fitting experimental SPR data with the Fresnel’s equations. Refractive index dispersion curve plotted and fitted with Sellmeier equation to analyze the variation of wavelength dispersion of the dielectric properties of the prepared thin films.

Full Text:

References

  1. Hemzal, D., Kang, Y. R., Dvořák, J., Kabzinski, T., Kubíček, K., Kim, Y. D., & Humlíček, J. (2019). Treatment of Surface Plasmon Resonance (SPR) Background in Total Internal Reflection Ellipsometry: Characterization of RNA Polymerase II Film Formation. Applied spectroscopy, 73(3), 261-270.
  2. Kovačević, M. S., Milošević, M. M., Kuzmanović, L., & Djordjevich, A. (2021). Modeling electromagnetic performance of plasma sustained by surface-waves. Chinese Journal of Physics, 74, 262-269.
  3. Tsymbalov, I., Gorlova, D., Shulyapov, S., Prokudin, V., Zavorotny, A., Ivanov, K., ... & Savel’ev, A. (2019). Well collimated MeV electron beam generation in the plasma channel from relativistic laser-solid interaction. Plasma Physics and Controlled Fusion, 61(7), 075016.
  4. Prabowo, Briliant Adhi, Agnes Purwidyantri, and Kou-Chen Liu. "Surface plasmon resonance optical sensor: A review on light source technology". Biosensors 8, no. 3 (2018): 80.
  5. Yesudasu, Vasimalla, Himansu Shekhar Pradhan, and Rahul Jasvanthbhai Pandya. "Recent progress in surface plasmon resonance-based sensors: A comprehensive review”. Heliyon 7, no. 3 (2021): 06321.
  6. Doiron, Brock, Mónica Mota, Matthew P. Wells, Ryan Bower, Andrei Mihai, Yi Li, Lesley F. Cohen et al. "Quantifying figures of merit for localized surface plasmon resonance applications: a materials survey." Acs Photonics 6, no. 2 (2019): 240-259.
  7. J. Dostálek, Jiri Homola, “Surface Plasmon Resonance Based Sensors”, Springer (2006).
  8. Omidniaee, A., Karimi, S., & Farmani, A. (2021),” Surface plasmon resonance-based SiO2 kretschmann configuration biosensor for the detection of blood glucose”. Silicon, 1-10.
  9. R. Tabassum, S. K. Mishra, and B. D. Gupta, “Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu–ZnO thin films”, Phys. Chem. Chem. Phys., Vol. 15, pp. 11868-11874, 2013.
  10. W. R. Tinga and S. O. Nelson, “Dielectric properties of materials for microwave processing-tabulated,” Journal of Microwave Power, vol. 8, no. 1, pp. 23–65, 1973.
  11. Aashis S. Roy, Satyajit Gupta, S. Sindhu, Ameena Parveen, Praveen C. Ramamurthy, “Dielectric properties of novel PVA/ZnO hybrid nanocomposite films”, Composites Part B: Engineering, Volume 47, April 2013, Pages 314-319.
  12. C. Madhu, I. Kaur, and N. Kaur, “Synthesis and investigation of photonic properties of surface modified ZnO nanoparticles with imine linked receptor as coupling agent- for application in LEDs,” Journal of Materials Science: Materials in Electronics, vol. 28, no. 9, pp. 6388–6398, 2017.
  13. T. Xiao, B. Heng, X. Hu, and Y. Tang, “In situ CVD synthesis of wrinkled scale-like carbon arrays on ZnO template and their use to supercapacitors,” 9e Journal of Physical Chemistry C, vol. 115, no. 50, pp. 25155–25159, 2011.
  14. S. Shi, X. Zhuang, B. Cheng, and X. Wang, “Solution blowing of ZnO nanoflake-encapsulated carbon nanofibers as electrodes for supercapacitors,” Journal of Materials Chemistry A, vol. 1, no. 44, pp. 13779–13788, 2013.
  15. Kashmira Harpale, Pankaj Kolhe, Prashant Bankar, Ruchita Khare, Sandip Patil, Namita Maiti, M.G. Chaskar, Mahendra A. More, Kishor M. Sonawane, Multifunctional characteristics of polypyrrole-zinc oxide (PPy-ZnO) nanocomposite: Field emission investigations and gas sensing application, Synthetic Metals, Volume 269,2020,116542.
  16. Daljeet Kaur, Amardeep Bharti, Tripti Sharma, and Charu Madhu, “Dielectric Properties of ZnO-Based Nanocomposites and their Potential applications”, International Journal of Optics Volume 2021, Article ID 9950202.
  17. A. Paliwal, A. Sharma, M. Tomar, and V. Gupta, “Optical properties of WO3 thin films using surface plasmon resonance technique”, J. App. Phys., Vol. 115, pp. 043104, 2014.
  18. F. K. Shan, B. C. Shin, S. C. Kim, and Y. S. Yu, “Characterizations of Al Doped Zinc Oxide Thin Films Fabricated by Pulsed Laser Deposition”, J. Korean Physical Society, Vol. 42, pp. 1374-1377, 2003.
  19. X. W. Sun, H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition”, J. Appl. Phys., Vol. 86, pp. 408, 1999.
  20. S. Thamri, I. Sta, M. Jlassi, M. Hajji, H. Ezzaouia, “Fabrication of ZnO-NiO nanocomposite thin films and experimental study of the effect of the NiO, ZnO concentration on its physical properties”, Materials Science in Semiconductor Processing, 71, 2017, Pages 310-320.
  21. Rajani Indrakanti, V. Brahmaji Rao, C. Udaya Kiran, “Optical parameters of gallium nitride doped ferrite–polypyrrole nanocomposites”, Journal of Materials Science: Materials in Electronics (2020) 31:3238–3244.
  22. Shujahadeen B. Aziz, M. A. Brza, Muaffaq M. Nofal, Rebar T. Abdulwahid, Sarkawt A. Hussen, Ahang M. Hussein and Wrya O. Karim, “A Comprehensive Review on Optical Properties of Polymer Electrolytes and Composites”, Materials 2020, 13, 3675; doi:10.3390/ma13173675.
  23. Hussain, Aasim, Anju Dhillon, I. Sulania, and Azher M. Siddiqui, "Comparative Study of Polypyrrole/Zinc Oxide Nanocomposites Synthesized by Different Methods." In Proceedings of the International Conference on Atomic, Molecular, Optical & Nano Physics with Applications: CAMNP 2019, pp. 601-607. Singapore: Springer Singapore, 2022.