Document Synthesis of PANI/RGO/NiCrO Nanocomposite Material for Charge Storage Application

By

Ritu Dubey, Pukhrambam Dipak, Anuradha Samadhiya, Dinesh Chandra Tiwari, Radha Tomar

Volume

Volume 10 | Issue: 1 | DOI: 10.37591/JoPC | Date:Apr 2022

Keywords


nanocomposite, aniline, supercapacitor, power density, transmission

Abstract

Demand for lightweight and fuel economy by automotive and aircraft industries focuses to explore different materials. Alloys and composites developed with same objective to obtain superior desired mechanical properties compatible for such intended applications. However, alloy consider as solid solutions with metallic properties and cannot mix with primary major element in random proportions. This forced researcher community to develop composites, which are heterogeneous solid solutions or multi-phase materials comprising matrix and reinforcement.Aluminium being lighter, cheaper and abundant material compared to others, present investigation aimed at using this as matrix material. In addition to it, stir casting processing technique (less expensive) used for introducing ferromanganese (5% & 10%) into aluminium matrix. Optical microscopic analysis of processed composites reveals non-agglomeration and uniform distribution of Fe-Mn in the aluminium matrix. Mechanical testing performed on composites to find strength, toughness and hardness. Outcomes of these tests shows enhancement of both strength and hardness compared to parent aluminium matrix while as toughness reduced. Open die forging carried out in between temperature 4000C and 5500C to establish suitable forming temperature for composites. Composite1 (5% Fe Mn) forged for higher extent of deformation compared to Composite 2(10% Fe Mn) at same forging temperatures. Similarly, for same forging temperature load carrying


References

Zeren F., Akkus H.T., The Relationship between Renewable Energy Consumption and Trade Openness: New Evidence from Emerging Economies. Renew. Energy 2020, 147, 322−329.

Chen Z., Qing H., Zhou K., Sun D., Wu R., Metal-Organic Framework-Derived Nanocomposites for Electrocatalytic Hydrogen Evolution Reaction. Prog. Mater. Sci. 2020, 108, 100618.

Kou T., Chen M., Wu F., Smart T. J., Wang S., Wu Y., Zhang Y., Li, S., Lall S., Zhang Z., Liu Y.-S., Guo J., Wang G., Ping Y., Li Y., Carbon Doping Switching on the Hydrogen Adsorption Activity of NiO for Hydrogen Evolution Reaction. Nat. Commun. 2020, 11, 590.

Kayan D. B., Koçak D., İlhan M., Koca A., Electrocatalytic Hydrogen Production on a Modified Pencil Graphite Electrode. Int. J. Hydrogen Energy 2017, 42, 2457−2463.

Vidales A. G., Omanovic S., Tartakovsky B., Combined Energy Storage and Methane Bioelectrosynthesis from Carbon Dioxide in a Microbial Electrosynthesis System. Bioresour. Technol. 2019, 8, 100302.

Ai L., Tian T., Jiang J., Ultrathin Graphene Layers Encapsulating Nickel Nanoparticles Derived Metal−Organic Frameworks for Highly Efficient Electrocatalytic Hydrogen and Oxygen Evolution Reactions. ACS Sustain. Chem. Eng. 2017, 5, 4771−4777.

Adekunle A., Gomez V. A., Woodward L., Tartakovsky B., Microbial Fuel Cell Soft Sensor for Real-Time Toxicity Detection and Monitoring. Environ. Sci. Pollut. Res. 2021, 28, 12792.

Vidales A. G., Choi K., Omanovic S., Nickel-Cobalt-Oxide Cathodes for Hydrogen Production by Water Electrolysis in Acidic and Alkaline Media. Int. J. Hydrogen Energy 2018, 43, 12917.

Korkmaz A. R., Cepni E., Dogan H.O., Electrodeposited Nickel/Chromium (III) Oxide Nanostructure modified pencil graphite electrode for enhanced electrocatalytic hydrogen evolution reaction activity, Energy Fuels, 2021,35,6298-6304.

Ahmed R., Nabi G., Enhanced electrochemical performance of Cr-doped NiO nanorods for supercapacitor application, Journal of Energy storage, 2021, 33, 102115.

Chaudhary G., Sharma A.K., Bhardwaj P., Kant K., Kaushal I., Mishra A.K., NiCo2O4 decorated PANI–CNTs composites as supercapacitive electrode materials, J. Energy Chem.26 ,2017, 175-181.

Jianhua L., Junwei A., Yecheng Z., Yuxiao M., Mengliu L., Mei Y., Songmei L., Preparation of an amide group-connected graphene–polyaniline nanofiber hybrid and its application in supercapacitors, ACS Appl Mater Interfaces 4 ,2012, 2870-2876.

Yang C., Liu P., Wang T., Well-defined core-shell carbon black/polypyrrole nanocomposites for electrochemical energy storage, ACS Appl Mater Interfaces 3, 2011, 1109-1114.

Yanik M. O., Yigit E.A., Akansu Y. E., Sahmetlioglu E., Magnetic conductive polymer graphene nanocomposites based supercapacitors for energy storage, Energy 138, 2017, 883-889.

Mondal S., Rana U., Malik S., Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor, J. Phys.Chem. C 121, 2017, 7573-7583.

Lee G., Cheng Y., Varanasi C.V., Liu J., Influence of the nickel oxide nanostructuremorphology on the effectiveness of reduced graphene oxide coating in supercapacitorelectrodes, J. Phys. Chem. C 118, 2014, 2281-2286.

Zhang Y., Li G. Y., Lv Y., Wang L. Z., Zhang A. Q., Song Y. H., Huang B. L.,Electrochemical investigation of MnO2 electrode material for supercapacitors, Inter. J.Hydrog. Energy 36, 2011, 11760-11766.

Samadhiya A., Dipak P., Dubey R., Tiwari D. C., Verma U. P., Fabrication of polyaniline functionalized titanium carbide nanocomposite supercapacitor for high specific capacitance and high energy density applications, Journal of polymer research, 2021.

Deshmukh P. R., Sohn Y., Shin W. G., Flexible Solid-State Symmetric Supercapacitor Based on (Fe,Cr)2O3 Oxide Layer Developed on the Stainless Steel Mesh, ACS Sustainable Chem. Eng. 6, 2018, 300-310.

Ma M., Shi Z., Li Y., Yang Y., Zhang Y., Wu Y., Zhao H., Xie E., High-performance 3 V “water in salt” aqueous asymmetric supercapacitors based on VN nanowire electrodes, J. Mater. Chem. A, 2020, 8, 4827.

Guo B., Chi M., Sun X. G., Dai S., Mesoporous carbon–Cr 2 O 3 composite as an anodematerial for lithium ion batteries, J. Power Sources 205, 2012, 495-499.

Ullah S., Khan I .A.,. Choucair M, Badshah A., Khan I., Nadeem M.A., A novel Cr 2 O3-carbon composite as a high performance pseudo-capacitor electrode material, Electrochim. Acta 171, 2015, 142-149.

Yue W., Tao S., Fu J., Gao Z., Ren Y., Carbon-coated graphene–Cr2O3 compositeswith enhanced electrochemical performances for Li-ion batteries, Carbon 65, 2013, 97-104.

Pourmortazavi S. M., Nasrabadi M. R., Karimi M. S., Mirsadeghi S. S., Evaluation of photocatalytic and supercapacitor potential of nickel tungsten nanoparticles synthesized by electrochemical method, New J. Chem. 42, 2018, 19934.

Naderi H., Sobati A., Nasab A. S.,.Nasrabadi M. R, Arani M. E., Ganjali M. R., Ehrlich H., Synthesis and supercapacitor application of cerium tungstate nanostructure Chemistry Select 4, 2019, 2862.

Zaidan B. A. H., Sohouli E., Mazaheri S., Bioanal A., A novel capping agent in preparation and characterization of CuAl2O4/CuO nanocomposite and its application for electrochemical detection of dopamine. Analytical & Bioanalytical Electrochemistry. 2019; 11 (1): 108-122.

Sanatkar T. H., Khorshidi A., Sohouli E., Janczak J., Synthesis, crystal structure, and characterization of two Cu(II) and Ni(II) complexes of a tetradentate N2O2 Schiff base ligand and their application in fabrication of a hydrazine electrochemical sensorInorganicaChim. Acta 506, 2020, 119537.

Naghian E., Sohouli E., Anal. Bioanal.,A New Electrochemical Sensor for Determination of Zolpidem by Carbon Paste Electrode Modified with [email protected] SnO2NP, Electrochem. 12, 2020, 458.

Asen P., Shahrokhian S., Zad A. I., Ternary nanostructures of Cr2O3/graphene oxide/conducting polymers for supercapacitor application, Jeac, 823, 2018, 505-516.

Zhu J., Jiang Y., Lu Z., Zhao C., Xie L., Chen L., Duan J., Single-crystal Cr2O3 nanoplates with differing crystalinities, derived from trinuclear complexes and embedded in a carbon matrix, as an electrode material for supercapacitors, Journal of Colloid and Interface Science 498 (2017) 351–363.

Hussai S., Wan P., Aslam N., Qiao G., Liu G., Wang M. Ag-doped NiO porous network structure on Ni foam as electrode for supercapacitors, Journal of Materials Science: Materials in Electronics 29 (3) (2018) 1759–1765.

Yuan G., Liu Y., Yue M., Li H., Liu E., Huang Y., Kong D., Cu-doped NiO for aqueous asymmetric electrochemical capacitors, Ceramics International 40, 7, 2014, 9101–9105.

Adib K., Chameh B., Gravand F., Reduced Graphene Oxide-Cr2O3 Nanocomposite as Electrode Material in Supercapacitors, Anal. Bioanal. Electrochem., Vol. 12, No. 7, 2020, 931-943.

Maheshwaran G., Selvi C., KaliammalR., Prabhu M. R., Kumar M. K., Sudhahar S., Exploration of Cr2O3-NiO nanocomposite as a superior electrode material for supercapacitor applications, Materials Letters 300, 2021, 130191.

Xu J., Wang K., Zu S. Z., Han B. H., Wei Z., Hierarchical nanocomposites ofpolyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energystorage, ACS nano 4, 2010, 5019-5026.

Sawangphruk M., Suksomboon M., Kongsupornsak K., Khuntilo J., Srimuk P., Sanguansak Y., Klunbud P., Suktha P., Chiochan P., High-performance supercapacitors basedon silver nanoparticle–polyaniline–graphene nanocomposites coated on flexible carbon fiberpaper, J. Mater. Chem. A 1, 2013, 9630-9636.

Tiwari D. C., Atri P., Sharma R., Sensitive detection of ammonia by reduced graphene oxide/polypyrrole nanocomposites, J. Synthetic Metal 2015, 203, 228-234.

Park H. W., Na B. K.,Cho B. W., Park S. M., Roh K. C., Influence of vanadium doping on the electrochemical performance of nickel oxide in supercapacitors, Physical Chemistry Chemical Physics 15, 40, 2013, 17626–17635.

Vijayakumar S., Nagamuthu S., Muralidharan G.,Supercapacitor studies on NiO nanoflakes synthesized through a microwave route, ACS Appl. Mater. Interfaces 5, 2013, 2188–2196.

Zhu C., Zhai J., Wen D., Dong S., Graphene oxide/polypyrrole nanocomposites: onestepelectrochemical doping, coating and synergistic effect for energy storage, J. Mater.Chem. 22, 2012, 6300-6306.

Chang S. K., Lee K. T., Zainal Z., Tan K. B., Yusof N. A., Yousoff W. M. D. W., Lee J. F., Wu N. L., Structural and electrochemical properties of manganese substituted nickel cobaltite for supercapacitor application, Electrochimica Acta 67, 2012, 67-72.

Hu Z.A., Xie Y.L., Wang Y.X., Wu H.Y., Yang Y.Y., Zang Z.Y., Synthesis and electrochemical characterization of mesoporous CoxNi1−x layered double hydroxides as electrode materials for supercapacitors,Electrochimica Acta, 2009, 54, 2737.

Gupta V., Gupta S. and Miura N., Potentiostatically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors,J. Power Sources, 2008, 175, 680.

Chandrasekaran N.I., Muthukumar H., Sekar A. D., Manickam M., Hollow nickel-aluminium-manganese layered triple hydroxide nanospheres with tunable architecture for supercapacitor application, Materials Chemistry and Physics, 2017, 195, 247-258.

Pahalagedara M.N., Samaraweera M., Dharmarathna S., KuoC. H.,PahalagedaraL. R. J. A., S. L., Removal of Azo Dyes: Intercalation into Sonochemically Synthesized NiAl Layered Double Hydroxide, J. Phys. Chem. C., 2014, 118, 17801-17809.

Ishaq S., Moussa M., Kanwal F., Ehsan M., Saleem M., Ngo T.V., DusanLosic, Facile synthesis of ternary graphene nanocomposites with doped metal oxide and conductive polymers as electrode materials for high performance supercapacitor,Scientific Reports, 2019, 9, 5974.

Anwar A. W., Majeed A., Iqbal N., Ullah W., Shuaib A., Ilyas U., Bibi F., Rafique H. M., Specific capacitance and cyclic stability of graphene based metal/metal oxide nanocomposites: a review, A review Journal of Materials Science & Technology, 2015, 31, 699-707.

Xiang C., Li M., Zhi M., Manivannan A., Wu N.A., A reduced graphene oxide/Co3O4 composite for supercapacitor electrode, J. Power Sources, 2013, 226, 65-70.

Uke S. J., Akhare V. P., Bambole D. R., Bodade A. B., Chaudhari G. N., Recent advancements in the cobalt oxides, manganese oxides, and their composite as an electrode material for supercapacitor: A review, A review Frontiers in Materials, 2017, 4, 21.

J. Li, Q. Yang, I. Zhitomirsky, Composite electrodes for electrochemical supercapacitors, Nanoscale Res. Lett., 2010, 5, 512.

Song C, Gui Y, Xing X, Zhang W., Well-dispersed chromium oxide decorated reduced graphene oxide hybrids and application in energy storage, Materials Chemistry and Physics 173 (2016) 460-466.

Xu X., Wu J., Yang N., Na H., Li L., Gao J., Cr2O3: a novel supercapacitor electrode material with high capacitive performance, Mater. Lett. 142 (2015) 172-175.

Zeren F., Akkus H.T., The Relationship between Renewable Energy Consumption and Trade Openness: New Evidence from Emerging Economies. Renew. Energy 2020, 147, 322−329.

Chen Z., Qing H., Zhou K., Sun D., Wu R., Metal-Organic Framework-Derived Nanocomposites for Electrocatalytic Hydrogen Evolution Reaction. Prog. Mater. Sci. 2020, 108, 100618.

Kou T., Chen M., Wu F., Smart T. J., Wang S., Wu Y., Zhang Y., Li, S., Lall S., Zhang Z., Liu Y.-S., Guo J., Wang G., Ping Y., Li Y., Carbon Doping Switching on the Hydrogen Adsorption Activity of NiO for Hydrogen Evolution Reaction. Nat. Commun. 2020, 11, 590.

Kayan D. B., Koçak D., İlhan M., Koca A., Electrocatalytic Hydrogen Production on a Modified Pencil Graphite Electrode. Int. J. Hydrogen Energy 2017, 42, 2457−2463.

Vidales A. G., Omanovic S., Tartakovsky B., Combined Energy Storage and Methane Bioelectrosynthesis from Carbon Dioxide in a Microbial Electrosynthesis System. Bioresour. Technol. 2019, 8, 100302.

Ai L., Tian T., Jiang J., Ultrathin Graphene Layers Encapsulating Nickel Nanoparticles Derived Metal−Organic Frameworks for Highly Efficient Electrocatalytic Hydrogen and Oxygen Evolution Reactions. ACS Sustain. Chem. Eng. 2017, 5, 4771−4777.

Adekunle A., Gomez V. A., Woodward L., Tartakovsky B., Microbial Fuel Cell Soft Sensor for Real-Time Toxicity Detection and Monitoring. Environ. Sci. Pollut. Res. 2021, 28, 12792.

Vidales A. G., Choi K., Omanovic S., Nickel-Cobalt-Oxide Cathodes for Hydrogen Production by Water Electrolysis in Acidic and Alkaline Media. Int. J. Hydrogen Energy 2018, 43, 12917.

Korkmaz A. R., Cepni E., Dogan H.O., Electrodeposited Nickel/Chromium (III) Oxide Nanostructure modified pencil graphite electrode for enhanced electrocatalytic hydrogen evolution reaction activity, Energy Fuels, 2021,35,6298-6304.

Ahmed R., Nabi G., Enhanced electrochemical performance of Cr-doped NiO nanorods for supercapacitor application, Journal of Energy storage, 2021, 33, 102115.

Chaudhary G., Sharma A.K., Bhardwaj P., Kant K., Kaushal I., Mishra A.K., NiCo2O4 decorated PANI–CNTs composites as supercapacitive electrode materials, J. Energy Chem.26 ,2017, 175-181.

Jianhua L., Junwei A., Yecheng Z., Yuxiao M., Mengliu L., Mei Y., Songmei L., Preparation of an amide group-connected graphene–polyaniline nanofiber hybrid and its application in supercapacitors, ACS Appl Mater Interfaces 4 ,2012, 2870-2876.

Yang C., Liu P., Wang T., Well-defined core-shell carbon black/polypyrrole nanocomposites for electrochemical energy storage, ACS Appl Mater Interfaces 3, 2011, 1109-1114.

Yanik M. O., Yigit E.A., Akansu Y. E., Sahmetlioglu E., Magnetic conductive polymer graphene nanocomposites based supercapacitors for energy storage, Energy 138, 2017, 883-889.

Mondal S., Rana U., Malik S., Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor, J. Phys.Chem. C 121, 2017, 7573-7583.

Lee G., Cheng Y., Varanasi C.V., Liu J., Influence of the nickel oxide nanostructuremorphology on the effectiveness of reduced graphene oxide coating in supercapacitorelectrodes, J. Phys. Chem. C 118, 2014, 2281-2286.

Zhang Y., Li G. Y., Lv Y., Wang L. Z., Zhang A. Q., Song Y. H., Huang B. L.,Electrochemical investigation of MnO2 electrode material for supercapacitors, Inter. J.Hydrog. Energy 36, 2011, 11760-11766.

Samadhiya A., Dipak P., Dubey R., Tiwari D. C., Verma U. P., Fabrication of polyaniline functionalized titanium carbide nanocomposite supercapacitor for high specific capacitance and high energy density applications, Journal of polymer research, 2021.

Deshmukh P. R., Sohn Y., Shin W. G., Flexible Solid-State Symmetric Supercapacitor Based on (Fe,Cr)2O3 Oxide Layer Developed on the Stainless Steel Mesh, ACS Sustainable Chem. Eng. 6, 2018, 300-310.

Ma M., Shi Z., Li Y., Yang Y., Zhang Y., Wu Y., Zhao H., Xie E., High-performance 3 V “water in salt” aqueous asymmetric supercapacitors based on VN nanowire electrodes, J. Mater. Chem. A, 2020, 8, 4827.

Guo B., Chi M., Sun X. G., Dai S., Mesoporous carbon–Cr 2 O 3 composite as an anodematerial for lithium ion batteries, J. Power Sources 205, 2012, 495-499.

Ullah S., Khan I .A.,. Choucair M, Badshah A., Khan I., Nadeem M.A., A novel Cr 2 O3-carbon composite as a high performance pseudo-capacitor electrode material, Electrochim. Acta 171, 2015, 142-149.

Yue W., Tao S., Fu J., Gao Z., Ren Y., Carbon-coated graphene–Cr2O3 compositeswith enhanced electrochemical performances for Li-ion batteries, Carbon 65, 2013, 97-104.

Pourmortazavi S. M., Nasrabadi M. R., Karimi M. S., Mirsadeghi S. S., Evaluation of photocatalytic and supercapacitor potential of nickel tungsten nanoparticles synthesized by electrochemical method, New J. Chem. 42, 2018, 19934.

Naderi H., Sobati A., Nasab A. S.,.Nasrabadi M. R, Arani M. E., Ganjali M. R., Ehrlich H., Synthesis and supercapacitor application of cerium tungstate nanostructure Chemistry Select 4, 2019, 2862.

Zaidan B. A. H., Sohouli E., Mazaheri S., Bioanal A., A novel capping agent in preparation and characterization of CuAl2O4/CuO nanocomposite and its application for electrochemical detection of dopamine. Analytical & Bioanalytical Electrochemistry. 2019; 11 (1): 108-122.

Sanatkar T. H., Khorshidi A., Sohouli E., Janczak J., Synthesis, crystal structure, and characterization of two Cu(II) and Ni(II) complexes of a tetradentate N2O2 Schiff base ligand and their application in fabrication of a hydrazine electrochemical sensorInorganicaChim. Acta 506, 2020, 119537.

Naghian E., Sohouli E., Anal. Bioanal.,A New Electrochemical Sensor for Determination of Zolpidem by Carbon Paste Electrode Modified with [email protected] SnO2NP, Electrochem. 12, 2020, 458.

Asen P., Shahrokhian S., Zad A. I., Ternary nanostructures of Cr2O3/graphene oxide/conducting polymers for supercapacitor application, Jeac, 823, 2018, 505-516.

Zhu J., Jiang Y., Lu Z., Zhao C., Xie L., Chen L., Duan J., Single-crystal Cr2O3 nanoplates with differing crystalinities, derived from trinuclear complexes and embedded in a carbon matrix, as an electrode material for supercapacitors, Journal of Colloid and Interface Science 498 (2017) 351–363.

Hussai S., Wan P., Aslam N., Qiao G., Liu G., Wang M. Ag-doped NiO porous network structure on Ni foam as electrode for supercapacitors, Journal of Materials Science: Materials in Electronics 29 (3) (2018) 1759–1765.

Yuan G., Liu Y., Yue M., Li H., Liu E., Huang Y., Kong D., Cu-doped NiO for aqueous asymmetric electrochemical capacitors, Ceramics International 40, 7, 2014, 9101–9105.

Adib K., Chameh B., Gravand F., Reduced Graphene Oxide-Cr2O3 Nanocomposite as Electrode Material in Supercapacitors, Anal. Bioanal. Electrochem., Vol. 12, No. 7, 2020, 931-943.

Maheshwaran G., Selvi C., KaliammalR., Prabhu M. R., Kumar M. K., Sudhahar S., Exploration of Cr2O3-NiO nanocomposite as a superior electrode material for supercapacitor applications, Materials Letters 300, 2021, 130191.

Xu J., Wang K., Zu S. Z., Han B. H., Wei Z., Hierarchical nanocomposites ofpolyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energystorage, ACS nano 4, 2010, 5019-5026.

Sawangphruk M., Suksomboon M., Kongsupornsak K., Khuntilo J., Srimuk P., Sanguansak Y., Klunbud P., Suktha P., Chiochan P., High-performance supercapacitors basedon silver nanoparticle–polyaniline–graphene nanocomposites coated on flexible carbon fiberpaper, J. Mater. Chem. A 1, 2013, 9630-9636.

Tiwari D. C., Atri P., Sharma R., Sensitive detection of ammonia by reduced graphene oxide/polypyrrole nanocomposites, J. Synthetic Metal 2015, 203, 228-234.

Park H. W., Na B. K.,Cho B. W., Park S. M., Roh K. C., Influence of vanadium doping on the electrochemical performance of nickel oxide in supercapacitors, Physical Chemistry Chemical Physics 15, 40, 2013, 17626–17635.

Vijayakumar S., Nagamuthu S., Muralidharan G.,Supercapacitor studies on NiO nanoflakes synthesized through a microwave route, ACS Appl. Mater. Interfaces 5, 2013, 2188–2196.

Zhu C., Zhai J., Wen D., Dong S., Graphene oxide/polypyrrole nanocomposites: onestepelectrochemical doping, coating and synergistic effect for energy storage, J. Mater.Chem. 22, 2012, 6300-6306.

Chang S. K., Lee K. T., Zainal Z., Tan K. B., Yusof N. A., Yousoff W. M. D. W., Lee J. F., Wu N. L., Structural and electrochemical properties of manganese substituted nickel cobaltite for supercapacitor application, Electrochimica Acta 67, 2012, 67-72.

Hu Z.A., Xie Y.L., Wang Y.X., Wu H.Y., Yang Y.Y., Zang Z.Y., Synthesis and electrochemical characterization of mesoporous CoxNi1−x layered double hydroxides as electrode materials for supercapacitors,Electrochimica Acta, 2009, 54, 2737.

Gupta V., Gupta S. and Miura N., Potentiostatically deposited nanostructured CoxNi1−x layered double hydroxides as electrode materials for redox-supercapacitors,J. Power Sources, 2008, 175, 680.

Chandrasekaran N.I., Muthukumar H., Sekar A. D., Manickam M., Hollow nickel-aluminium-manganese layered triple hydroxide nanospheres with tunable architecture for supercapacitor application, Materials Chemistry and Physics, 2017, 195, 247-258.

Pahalagedara M.N., Samaraweera M., Dharmarathna S., KuoC. H.,PahalagedaraL. R. J. A., S. L., Removal of Azo Dyes: Intercalation into Sonochemically Synthesized NiAl Layered Double Hydroxide, J. Phys. Chem. C., 2014, 118, 17801-17809.

Ishaq S., Moussa M., Kanwal F., Ehsan M., Saleem M., Ngo T.V., DusanLosic, Facile synthesis of ternary graphene nanocomposites with doped metal oxide and conductive polymers as electrode materials for high performance supercapacitor,Scientific Reports, 2019, 9, 5974.

Anwar A. W., Majeed A., Iqbal N., Ullah W., Shuaib A., Ilyas U., Bibi F., Rafique H. M., Specific capacitance and cyclic stability of graphene based metal/metal oxide nanocomposites: a review, A review Journal of Materials Science & Technology, 2015, 31, 699-707.

Xiang C., Li M., Zhi M., Manivannan A., Wu N.A., A reduced graphene oxide/Co3O4 composite for supercapacitor electrode, J. Power Sources, 2013, 226, 65-70.

Uke S. J., Akhare V. P., Bambole D. R., Bodade A. B., Chaudhari G. N., Recent advancements in the cobalt oxides, manganese oxides, and their composite as an electrode material for supercapacitor: A review, A review Frontiers in Materials, 2017, 4, 21.

J. Li, Q. Yang, I. Zhitomirsky, Composite electrodes for electrochemical supercapacitors, Nanoscale Res. Lett., 2010, 5, 512.

Song C, Gui Y, Xing X, Zhang W., Well-dispersed chromium oxide decorated reduced graphene oxide hybrids and application in energy storage, Materials Chemistry and Physics 173 (2016) 460-466.

Xu X., Wu J., Yang N., Na H., Li L., Gao J., Cr2O3: a novel supercapacitor electrode material with high capacitive performance, Mater. Lett. 142 (2015) 172-175.

Authors

Ritu Dubey, Pukhrambam Dipak, Anuradha Samadhiya, Dinesh Chandra Tiwari, Radha Tomar

NA

NA

Reviewer

Na

Na

Na

Editors

Ritu Dubey, Pukhrambam Dipak, Anuradha Samadhiya, Dinesh Chandra Tiwari, Radha Tomar

NA

NA